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Abstract

This is a preliminary report on the foundations of model-based verification for engineering
software system upgrades. It describes the historical background and technical foundations
for the approach and begins to provide a basis for the transition of model-based verification
into practice. Critical technical and procedural issues that have been or are being addressed to
ensure successful transition are examined. The report is aimed at providing technical insight
and understanding for software management and engineering personnel on this emerging
technology for verification of software system upgrades.
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Executive Summary

Work is underway at the SEI to evaluate and codify innovative approaches to reduce software
errors and increase the quality of upgrades to mission-critical software systems. One of the
key technologies of these approaches is model-based verification. Model-based verification
technologies are built upon the results of an increasing body of research, anecdotal evidence,
promising software pilot studies, and successful industrial applications of model-based analy-
sis in digital hardware design and protocol analysis.

In the upgrade of a software system, model-based verification relies on models and higher
design representations as the foundation for verification and test activities. The action of gen-
erating models early in the upgrade process establishes a systematic software verification
practice for understanding an upgrade and identifying errors. The results of these error detec-
tion activities are used as the basis for testing by defining test strategies, test cases, and criti-
cal areas that require focused or more extensive testing. A high-level overview of these ac-
tivities is shown in Figure 1.

Generation and
Analysis of Models

[ LN

e o uirements Design(s) f—> | Code

Figure 1: Model-Based Verification Activities

The central foundation of model-based verification is a selective and pragmatic application
of formal methods in the form of simplified models that focuses on error (defect) identifica-
tion rather than formalized specification or proofs. By judiciously choosing when, to what
detail, and to what extent to employ them, the model-based verification approach capitalizes
on the advantages provided by formal methodologies without incurring the costly overhead
normally associated with them.
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A promising basis for the use of model-based verification in software is found in its success
in the form of model checking for digital hardware and complex protocol systems. Some rep-
resentative examples of the published successes of model checking include

e identifying a critical error in a complex protocol chip that had undergone conventional
reviews, simulation, and testing and was ready for production

e detecting an error in a hardware protocol standard (IEEE standard Futurebus+) that had
previously been extensively discussed, simulated, and implemented

e providing guidance in correcting and uncovering the causes of a complicated error in a
microprocessor. The error was detected during operational computer configuration
testing, when it is difficult to ascertain underlying causes using traditional analysis
techniques. This work also demonstrated that with model checking the error could have
been detected earlier in the development effort, before the design was implemented in
silicon.

Based on the success of model-based verification techniques in other applications, there are
numerous potential benefits of these approaches for improving the dependability of software
upgrades. Two specific benefits are

o flexibility. The methods can be applied to all or only the most critical portions of the
system. Portions of the system can be modeled at differing levels of abstraction as
determined by need.

e effectiveness. The methods are useful for detecting both basic and more subtle errors
(and hence potentially more costly) errors, many of which are not identified even in
extensive testing.

Model-based verification integrates established software modeling techniques, formal meth-
ods, and innovative model checking approaches into a systematic engineering verification
and testing practice. Although this practice is useful at all phases of system development, this
report concentrates on its use for engineering dependable software upgrades. Specifically,
these efforts address the technical, process, and transition issues relating to model-based veri-
fication in software engineering upgrade practices.
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1 Background and Introduction

Rapid, perpetual, and complex change characterizes today’s DoD software-dependent mission
critical systems. The Department of the Air Force's Guidelines for Successful Acquisition and
Management of Software-Intensive Systems: Weapon Systems, Command and Control Systems,
Management Information Systems is quite definitive in characterizing the importance of
changes made to DoD software systems. With statements like “the Software Crisis has really
been the Maintenance Crisis” and “... the typical cost to maintain a software product is from
60% to 80% of total life cycle costs” [USAF 96], the problems experienced with maintaining
these systems and the high cost of the latest technology appear to be intertwined.

Further complicating this situation of ubiquitous change to software systems is the error
prone character of those changes. Studies show that the probability of making an error, de-
pending upon the level of complexity of the change, ranges from 50 to 80% [Hetzel 88, Os-
trand 88]. The costs associated with errors in software can amount to as much as 70% of the
cost of developing that software [Harel 87]. These data point to the need to address error re-
duction as a critical issue in software-intensive upgrades.

In meeting the challenges to reduce software upgrade errors and increase the quality of mis-
sion-critical software systems, the SEI is codifying a set of software engineering techniques
and practices for verification and test, known as model-based verification (MBV). MBV can
be used to identify and correct errors in the requirements, design, or implementation of a
software-dependent system upgrade.

At this point in the evolution of MBV practices, the technical focus is on techniques, princi-
pally formal approaches, that address the idiosyncrasies and problems associated with digital
systems. In particular, techniques that have shown promise for software and have been suc-
cessfully employed in research or commercial endeavors (e.g., model-checking technologies
in digital hardware verification) are being investigated.

1.1 Goals of Model-Based Verification Efforts

A principal role of the SEI is to investigate the efficacy and appropriateness of promising engi-
neering techniques and to unite them into a set of software engineering practices. Substantial
leverage is found in capitalizing on the results of a wide variety of research and engineering
studies and incorporating those results into a framework appropriate to improve software engi-
neering practice. Earlier work in formal methods at the SEI addressed their use for reactive
systems, investigated the state of industry applications of formal methods, discussed their use in
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safe-critical software and in describing architectures, and defined a classification scheme for
formal specification techniques [Clements 95, Place 89, Place 90, Place 93).

The current work in model-based verification is building upon an increasing foundation of
promising techniques, especially formal techniques, and adapting the underlying principles
and methodologies to improve software system upgrades. In the broader context, model-
based verification is seen as an integral technique in verification and testing practices that
reduce the occurrence of errors in software upgrades.

1.2 Structure and Content of the Report

This report discusses the technical foundations of model-based verification by focusing on
generalized modeling techniques and formal methods that address the discrete nature of soft-
ware systems. The goal of this work is to provide technologies and practices that improve the
dependability of software upgrades. Since this is an active area of investigation within the
SEI, the technologies presented here will evolve and expand. Consequently, rather than a de-
finitive statement on the technology, this report is a preliminary presentation on the nature
and potential of model-based verification for software system upgrades. Subsequent technical
reports and publications will describe the evolution of technology and practices issues associ-
ated with the transition of model-based verification approaches for software system upgrades.

Section 2 is an overview of model-based verification. The technical aspects of model-based
verification are discussed in Section 3. Model-checking technology and its uses are presented
in Section 4. Section 5 summaries this report and discusses future directions.
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2 Model-Based Verification

Model-based verification (MBV) is an engineering practice for identifying and correcting
errors. It can be applied in the development as well as in the upgrade of complex software
systems. The technical foundation of the approach involves the selective use of varying levels
of abstraction and formalism in the systematic generation and analysis of “essential” models
of a system. Essential models are simplified (abstract) representations that capture the es-
sence of a system, rather than provide an exhaustively detailed description.

It is the reduced complexity afforded by essential models that enables the judicious incorpo-
ration of the rigors of, while minimizing the adverse, high-cost impacts associated with for-
mal methods. Through the selection of only critical parts of the system and/or abstracted per-
spectives of the entire system, a reviewer using model-based techniques can apply the
appropriate method and tailor the model to the idiosyncrasies of an individual system.

Model-based verification benefits from and incorporates the work of numerous researchers
and practitioners in a number of diverse disciplines. The practices and principles of model-
based verification are an amalgamation of a variety of different modeling and analysis tech-
niques already established in software engineering practices, used in other engineering do-
mains (e.g., commercial microprocessor design), or currently emerging in academic and cor-
porate research communities [Clarke 96b, Easterbrook 97, Heitmeyer 96]. In particular, the
ideas and results of these reports have helped to formulate and evolve the foundations of
model-based verification approaches. Because most of these techniques involve the selective,
focused use of formal methods (e.g., within MBV in generating essential models) these tech-
niques have been termed lightweight formal methods [Jackson 96a, Jackson 96b].

2.1 The Model-Based Verification Paradigm

Verification is used here in the broad sense of an engineering practice that evaluates the arti-
facts of software development and maintenance. This is to determine that these artifacts
(specifications) agree with their antecedents and ultimately with the desired system. Their
relationships are represented in Figure 2.
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P Design
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Figure 2:  Verification and Validation

The selective application of formal methodologies in the form of models, and the focus on
error identification and correction, rather than proof-of-correctness, distinguishes the model-
based verification paradigm from more traditional formal methods approaches. When formal
methods are used for software engineering, both the “artifact being verified” and its antece-
dent must be in a formal representation. Verification on an artifact therefore involves proving
a correspondence between the statements in the artifact itself and those in its antecedent.
These proofs are based on the explicit and precise delineation of assumptions and the mathe-
matical reasoning rules that characterize formal methods.

In contrast to approaches where formal methods pervade the specification and verification
processes, for model-based verification, only the essential models need be in a formal repre-
sentation. These formalized representations, essential models, are less detailed (simplified)
portrayals of the artifact to be verified, are distinct from other engineering artifacts, and are
analyzable. Figure 3 shows the relationships among the various artifacts. The essential mod-
els are direct representations of the “artifact to be verified.” The antecedent artifact and the
desired system (as described by requirements or other specifications) are used to define de-
sired properties. In addition to the identification of errors that occurs during the generation of
the models, the models themselves can be analyzed (checked) to determine if they possess the
desired properties.

The number, level of formalism, and scope of the models used are adjusted to meet the par-
ticular objectives of the verification activity and the complexity of the system. In some cases
only a handful of models or only models of minimal formalism are required. In others, more
rigorous formal models are developed that can be formally analyzed using automated analy-
sis tools. The range of formalism can extend from using a basic state model to employing a
complete axiomatic formal system with accompanying syntax, semantics, and inference rules.

4 CMU/SEI-98-TR-009




Both the process of modeling and the process of checking (whether manual or automated)
uncover errors in the “artifact to be verified.” In generating the model(s) of the artifact, for-
malism provides a systematic framework and procedure. The discipline and logic inherent in
the modeling activity uncovers numerous omissions, inconsistencies, and logic errors. This
has often been cited as one of the major benefits of using formal methods in the specification
process [NASA 95, Rushby 93]. Thus, simply modeling, even developing a highly abstracted
model of only part of a system, can provide substantial insight and identify significant errors
[Clarke 95, Dill 92, Raimi 97]. The checking of models (especially automated checking) can
identify more complex errors, often those that defy detection by conventional inspection pro-
cesses, simulations, and testing [Clarke 96a]).

generation

Figure 3. Essential Models in Model-Based Verification

The engineering decisions on the level of detail of essential models, their perspectives, and
their scope are key in the application of model-based verification. These decisions are part of
model-based verification practice and are based upon the specific needs of the individual de-
- velopment or upgrade effort. The levels of formalism used for a software product may vary
between upgrades throughout the useful lifetime of that product.

In addition to models founded upon formal methods, the models that are employed within
model-based verification encompass a variety of mathematical-based techniques that are not
classified as formal methods. Generally, the terminology of formal methods denotes discrete
mathematical and predominantly axiomatic techniques that address the problematic issues
that emerge within digital systems [Rushby 93]. Within model-based verification practices,
semi-formal modeling techniques and other modeling approaches that address the diverse and
potentially problematic technical aspects of complex digital systems can be employed. For
example, the use of Generalized Rate Monotonic Analysis [Klein 93] models may be used as
part of model-based verification practices.

CMU/SEI-98-TR-009 5



2.2 Context and Related Work

As a software engineering practice, model-based verification leverages the precision, disci-
pline, and thoroughness afforded by formal methods to address the problems that have
plagued many software upgrades. There have been others who have advocated the integration
of formal methods into software engineering practice [Meyer 85, Rushby 93]. Generally,
these efforts have focused on formal methods as a basis for both specification and verifica-
tion [Parnas 98, Rushby 93, Vienneau 93].

Different perspectives on integrating formal methods into software engineering practice have
been presented by other researchers. Specifically, Michael Jackson points out that “..’although
the claimed advantages of formal methods are correctness and reliability, the methods are
implicitly presented as constructive development methods—that is, methods for describing new
problems, and inventing and designing novel solution structures with which correctness and
reliability can be assured.” He also notes that formalisms offer potential as “sharply focused
micro-methods, supporting specialized small-scale tasks of analysis and detailed design.”
[Jackson 98]. Parnas feels that the concepts underlying formal methods should be an integral
part of routine software engineering practice and not a separate “add-on” [Parnas 98].

Researchers employ formal modeling and checking as tools for verification or validation of
software, regardless of the specification language employed in the development [Atlee 93,
Clarke 96b, Easterbrook 97, Miller 98, Wing 96]. In particular, the ideas discussed here are
directly related to the application of formal methods and tools as “spot checks” to test for er-
rors in Independent Verification and Validation (IV&V) of software requirements for safety-
critical systems as explored in Easterbrook [Easterbrook 98]. Other researchers address
adoption issues by developing presentation styles for formal methods that are more familiar
to domain engineers (e.g., tabular representation of state machines) [Heitmeyer 96, Leveson
94, Parnas 92].

In the broad context of the use of formal methods in software, model-based verification can
been seen as incorporating the ideas of partial and focused formalisms, providing much of the
value afforded by formal methods while minimizing the pitfalls accompanying their adop-
tion. This lightweight application [Jackson 96b] of formal methods in the form of partial ab- ;
stract models contrasts with the use of formal methods as detailed and rigorous specification
techniques. In formal specification the objective is to create specifications amenable to direct
formal analysis. Model-based verification typifies a lightweight approach to formalism that
focuses on simplified models that can be analyzed and capture the essence of the system.

2.3 Model-Based Verification in Software Upgrades

While model-based verification can be applied in the development of a new software system,
the focus of work at the SEI is to apply emerging model-based techniques and related support
tools to improve the quality of software upgrades.
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Model-based verification is especially useful at higher levels of representation (e.g., require-
ments capture, system design, requirements and design analysis). This focus on verifying re-
quirements and design representations using model-based verification techniques, in contrast
to relying principally on testing for identifying errors, can help ensure a more reliable and
predictable upgrade. Specifically, model-based verification techniques can be used to aug-
ment existing review practices and can help to focus regression testing of upgraded code.

The partial analysis capability of model-based approaches enables a software engineer to fo-
cus on the areas of change without modeling the entire system. In addition, through simple
modifications to entire system models, created in earlier design and verification efforts,
changes in a particular part can quickly be reflected in analyses of the total system. These
analyses of updated models provide insights into the global impacts of changes and can form
the basis for an evolutionary upgrade practice, where models are central to the development
and maintenance of a software system.

In addition to detecting errors in an upgrade, model-based verification practices and the mod-
els that are created can form the basis for proactive upgrade design activities. In proactive
design, models can be employed to assess the impact as well as the extent of potential
changes prior to their implementation, identifying both desired and adverse consequences.
These model-based practices can be integrated into broad design approaches for upgrade.

This basic model-based verification paradigm can be integrated into existing software engi-
neering processes, or form the basis for establishing a distinct set of model-based verification
processes within an upgrade effort. The substantial potential for the use of models, as well as
model-based verification, as a basis for improving the dependability (quality) and afforda-
bility of software upgrades, is a principal area of investigation within the dependable system
upgrade initiative at the SEI. This and subsequent SEI reports will focus on the use of model-
based verification techniques in engineering of dependable software upgrade.

CMU/SEI-98-TR-009 7
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3 Technical Aspects of Model-Based
Verification

Software development is an intellectual endeavor that involves the description of what a sys-
tem is and how it behaves, both internally and in the context of its environment. This point is
made very clearly in the observation that “to develop software is to build a Machine, simply
by describing it” [Jackson 95]. Given this perspective, descriptions and the languages that are
used for them are central to successful software engineering.

The descriptions of desired systems or updates to them are embodied in the artifacts, the
“documents,” of software development. The effort of producing software can be seen as a
progression in the description of a system, extending from higher level descriptions (re-
quirements) that primarily involve a language of the system’s environment (domain), to de-
scriptions in the idiosyncratic programming languages of “software.” Thus, when a desired
system is correctly described in a programming language and executed on the target machine,
it is a product that “possesses” desired characteristics and behavior within its environment.

It is important to recognize that this evolution in the development of a software product is
twofold. One is the progression of the context of the description, from application domain to
internal computer and software domains. A second is a change in the nature of the description
itself. This change can be viewed as a transition from static prose, often expressed in natural
language, to a dynamic “embodiment” of the system in the form of executable code.

Code and some other intermediate descriptions used in software engineering (e.g., simula-
tions) are more than static representations of structure or behavior. While varying in the
level of detail, these descriptions and the language employed for them share common char-
acteristics of the reality they portray, often mirroring the system’s behavior. In an engi-
neering sense, many of these descriptions are analogs (models) of the real system they de-
scribe [Jackson 95].

3.1 Models

Models have been defined in a variety of ways. The meaning and use of the term model de-
pends on the application domain. Even when employing similar mathematical techniques,
the models used by a geneticist are very different from those used by an aerospace engineer.
This dilemma, arising out of the context of use of the term model, is further complicated by
the fact that different kinds of models can be identified. For example, Ackoff [Ackoff 62]
defines three kinds of models:

CMU/SEI-98-TR-009 9




e iconic (e.g., a model airplane, an icon of reality). This is a model that is a physical,
perhaps scaled down and simplified, representation of the reality. It is generally more
than just a picture. In an iconic model, some details may have been eliminated but the
key structural aspects of the reality are captured visually. [Included here are distinct
“visual” representations of the system that use electromagnetic perspectives that are not
visible to human beings (e.g., an infrared model of an object).]

e analogic (e.g., analog of reality). This is a model of a system that mirrors principal
behavioral characteristics of a system within another domain. For example, the values of
the voltage and current in an electrical circuit can be used to model the pressure and flow
of a liquid.

e analytic (e.g., differential equations of motion). These are mathematical statements where
the variables’ model physical parameters in the reality being modeled and the operations
and other mathematical properties reflect the behavior of the reality. By analyzing the
mathematical system one can gain insight into the properties of the real system.

The type of models that are used in model-based verification involve primarily the last two of
these: analogic and analytic. The “definition” that we will adopt here captures the inherently
descriptive nature of software and reflects a number of perspectives including:

e “...an abstraction of something for the purpose of understanding it before building it.”
[Rumbaugh 91]

e “An abstraction of reality that [itself] shares important behaviors, properties, and
structure with that reality.” {Jackson 95]

It is the ability to both provide insight into a system (understanding) and exhibit shared prop-
erties with that system that characterize the “models” used in model-based verification.

3.2 Formalism in Modeling

Most of the modeling approaches employed in model-based verification are based upon some
level of formalism and involve the application of a formal methodology'. Vienneau [93)
adapts the definition provided in Wing [90] to define a formal method in software develop-
ment as “a method that provides a formal language for describing a software artifact (e.g.,
specifications, designs, code) such that formal proofs are possible, in principle, about proper-
ties of the artifact so expressed.”

! There are a number of comprehensive discussions on formal methodologies in the literature including
[NASA 95, NASA 97, Vinneau 93, Wing 90, NIST I]. These provide both non-technical and theoretical
descriptions of formal methods.
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For the purposes of this report, formalism, specifically a formal modeling approach, is
viewed as a collection of principles and practices that are built upon

* well-defined language of expression and inference (i.e. a set of symbols and clearly
defined rules for their use, generally mathematical or logic rules)

* meaning assigned to the symbols of the language (i.e. a set of procedures for giving
meaning to the symbols and interpreting the rules of use of the language in terms of these
meaningful symbols)

Within model-based verification, the formalism of software engineering models is used to
capture the essential properties and behavior of a system. A formal modeling system has a
well-defined language and methodology that includes mathematical and logical concepts and
constructs that enable formal deduction (reasoning and inference about a system) and “proof”
of properties (theorems) about that system.

3.3 Formal Methods for Verification

While formal methods have long been advocated for software engineering, they have not
been widely used. Formal methods have been applied in cleanroom engineering [Linger 94,
Mills 87] and other projects. Sixty commercial projects were identified and twelve reported
on in detail in an international survey [Craigen 93a, Craigen 93b]. The Formal Methods in
Europe (FME) series of symposia has focused on issues relating to the industrial use of for-
mal methods [Gaudel 96]. However, the results of the adoption of formal methods have been
mixed [Pfleeger 97] and there is controversy over their efficacy for industrial applications
[Computer 96]. The more notable applications of formal methods have been in safety-critical
and high assurance systems [Clarke 96b, Jackson 98, NASA 95, NASA 97, Vienneau 93].

A frequently advocated implementation of formal methods for software development in-
volves their use in the specification, design, and verification of a system [Parnas 98]. In this
case, formal verification entails complicated and generally quite costly formal proofs or
proof checking (sometimes supported by tools for theorem proving) to establish correctness
of the specification.

3.4 Formal Methods and Essential Models

In contrast to a full specification and verification of a system by formal languages and associ-
ated proof systems throughout the software engineering effort, model-based verification in-
volves the selective application and focused use of formal methods. Specifically, formal
methods are employed for detecting and correcting errors rather than developing detailed
specifications or proving correctness.

In model-based verification, well-formed “essential” models are created using formalism, and
analyzed relative to expected behavior and properties. Generating essential models involves
creating “simplified” models that accurately portray the important properties of a system
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while disregarding (abstracting away) the less important. This abstraction and modeling pro-
cess involves engineering choices in four distinct dimensions:

e formalism: what formalism to apply?

e abstraction: what level of detail is needed?

e perspective: what modeling views of the system are required?
e scope: what parts of the system need to be modeled?

From a practical perspective, these issues involve decisions on what modeling approaches to
employ and what aspects of the system should be modeled, i.e., identifying what is important
about the system in its use.

The context, the nature of the problem domain, is particularly influential in these choices and
the decision process is one of matching between domain and model, rather than simply se-
lecting. There is a need to match the specific characteristics of the environment with the par-
ticular characteristics of the modeling approach. These dimensions are not mutually exclusive
but there is often interplay among them. For example, deciding scope and perspective may
involve a trade-off between modeling the whole system from a single perspective or critical
parts of the system from multiple perspectives and at various levels of abstraction.

3.4.1 Formalism

What is the appropriate level of formalism to employ for this system? This decision often is a
programmatic as well as a technical one. While the extensive use of formalism is appropriate
for high assurance and safety critical systems, the cost-effective application of formalism in
most system development and upgrade efforts entails an impact assessment of a complex in-
terplay of cost and criticality. Formalism is generally very costly and the potential benefits of
formalism must be assessed relative to the risks and criticality of a system.

3.4.2 Abstraction

What level of detail is required to achieve the objectives of the analysis? Abstraction is the
process of focusing principally on the important details and ignoring (abstracting away) those
details which are less important to the problem at hand. If a modeling effort requires a complete
“re-specification” of the system, it would likely be overly burdensome to a develop effort.

A promising aspect of model-based verification is evidenced in recent model-checking inves-
tigations. These studies suggest that, by using relatively simple, highly abstracted models,
significant errors can be successfully identified in complex digital systems [Clarke 95, Raimi
97, others]. Deciding what is important, not only in terms of abstraction level, but also asso-
ciated scope and perspective, are significant aspects of the engineering decisions involved in
using model-based verification.
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3.4.3 Perspective

What modeling view or views of the system are required? This addresses the abstract per-
spective used to represent the system. A perspective could be from that of a user or abstrac-
tions associated with a specific feature, function, or capability of a system. For example, in
looking at a fly-by-wire computer system for an aircraft, one perspective would be to char-
acterize (model) the system from a fault response perspective. This might involve a model
that describes states of the system in terms of the number or types of faults that may occur
(e.g., the no fault state, single fault state, loss of roll attitude information). An alternative per-
spective might be the flight modes of the system (e.g., takeoff, climb out, cruise, landing).

3.4.4 Scope

The scope of the model defines how much (what portion) of a system is to be modeled. In
some cases, it is important to model all of the system at a high level of abstraction consider-
ing one perspective (e.g., model and analyze the fault response of the entire system). In oth-
ers, it is necessary to model a specific part of the system in greater detail (e.g., model and
analyze the network communication modules). These choices are largely driven by determi-
nations of the critical aspects of the system and its development or upgrade, including both
programmatic and technical issues.

A model-based verification effort will involve a set of models of various scopes, perspectives,
and levels of abstractions. Establishing guidelines and principles for these decisions is one of
the major areas of investigation of the model-based verification work. Specifically, risk-
driven and high leverage approaches for making these choices are being investigated.

3.5 Model-Based Verification Techniques

The set of techniques that can be used in model-based verification is broad. As work contin-
ues in investigating these techniques, the scope of potential modeling approaches will ex-
pand. The range for these modeling techniques includes semi-formal modeling techniques,
formal methods, mathematical-based techniques that are not classified as formal methods,
and other types of models that address the diverse and potentially problematic technical as-
pects of complex systems. These other models include, for example, Generalized Rate
Monotonic Analysis [Klein 93] models. The semi-formal models include object models (e.g.,
UML) and those founded in structured design approaches.

At this point in the evolution of model-based verification technology and practice, the techni-
cal focus is on state machine modeling approaches. These techniques address the idiosyn-
cratic and problematic issues associated with digital systems. The general set of techniques
for potential application in model-based verification include

e state machine models

e sets and relations models
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e state exploration approaches
e temporal logic models

e concurrent processes models

In particular, specific techniques that have shown promise for software or have been success-
fully employed in other disciplines and can be adapted for analyzing software (e.g., model-

checking technologies) will be investigated.

14
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4 Model Checking

Model checking is a verification technique that focuses on the automated analysis of finite
models of a system. As a technique for analyzing complex state machines, it has been
gaining acceptance and producing successful results in digital hardware and protocol analy-
sis [Clarke 96b].

The success of model checking in domains outside of software and its potential for handling
complexity in software systems prompted research into its use in software verification. The
results of this research and the increasing number of successes of the technique for digital
hardware systems provided the impetus and technical foundation for the model-based verifi-
cation approach. In this context, model checking is viewed as an example of using an auto-
mated tool to support the analysis activities within the model-based verification paradigm.

This section presents representative model checking approaches that can be employed in
model-based verification practices, by focusing primarily on formal models that are amenable
to automated model checking.

4.1 State Machines in Model Checking

Model checking is a form of model-based verification where an automated tool is used to
check a system model, generally a state machine model, against its expected properties. The
output of the checking tool is either a confirmation that each property is maintained or a non-
confirmation—in which case a counter example is provided. For example, a model of a mis-
sile launch system is checked against the expected property that the missile will not be
launched (engines ignited) unless all the release latches are disengaged. If this property is true
for the model, the model checker will confirm its validity. If it is not true, it will show what
states or portions of the model (a counter example) will result in the premature launch. Figure
4 depicts the model-checking process where an essential state machine model of a system is
“checked” against the system’s expected properties.
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Figure 4: Model Checking

Checking a state machine model involves “exploring” the model’s state space to determine
the validity of desired properties (claims) about the system. Two distinct approaches for
model checking can be identified [Clarke 96b]:

e temporal logic based model checking; this involves a finite state transition model of the
system with a temporal logic representation of the expected properties of a system.

e automaton based model checking; this involves an automaton model for both the system
itself and its expected properties.

In either of these approaches the checking is readily automated. The challenge in each is to
find optimization algorithms and enhanced processing techniques that enable systems of re-
alistic size to be checked (e.g., 10" states [Clarke 941).

4.2 Model-Checking Successes

Model-checking techniques and their associated support tools have been successfully em-
ployed in a variety of digital hardware and protocol analyses and recently have been used to
analyze software systems. This section summarizes some of the successes that have been
documented in published reports.?

4.2.1 IEEE Futurebus+

Edmund Clarke and his colleagues applied model checking to the Futurebus+ cache coher-
ence protocol [Clarke 95]. In the process of formalizing and verifying the protocol they dis-
covered a number of errors and ambiguities. This is the first time, in their belief, that formal
methods have been used to find nontrivial errors in a proposed standard. To do this they used
the Symbolic Model Verifier (SMV), a tool that checks if finite-state systems satisfy specifi-
cations given in Computational Tree Logic (CTL).

Futurebus+ is described both in an informal language version and by precise attributes. The
behavior of an individual cache or memory is given in terms of roughly 300 attributes, so

2 There have been numerous anecdotal accounts of notable model checking successes that have been
circulating throughout the research and development community. These have ranged from detection of
subtle errors in fielded email systems to potentially costly errors in high performance microprocessor
designs.
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they elected to use the informal English version to construct their model, and only to turn to
the attributes when necessary to resolve an ambiguity in the English version.

While trying to verify the model of the protocol they found a number of errors, some of
which resulted in incoherent caches, and others which resulted in deadlock. They checked
configurations of up to three buses and eight processors, with reachable states of up to 10%.
This resulted in models of up to 150,000 nodes, a reasonable size which allowed the verifier
to give feedback in a matter of minutes. This made it possible to find bugs and try possible
fixes very quickly.

What is especially noteworthy about this study is that the specification had been through
more than four years of standards reviews by technical experts. Yet despite these efforts,
which were based upon less formal review processes, the errors had defied discovery until
model-checking techniques revealed them.

4.2.2 Protocol Verification

In 1992 the Murphi protocol description language and verifier were used to verify two hard-
ware designs intended to become commercial products: a directory-based cache coherence
protocol and a synchronous link-level communication protocol [Dill 92).

Directory-based cache coherence is a way of implementing a shared-memory abstraction on
top of a message-passing network. When using messages that may not arrive in the same or-
der they were sent, the effort to maintain cache coherence in the face of multiple transactions
can be quite complicated.

Instead of specifying the complete protocol, the verification team specified a set of properties
that were obviously necessary conditions for correct operation. They tried this for varying
sized systems (e.g., differing number of main memories and directories, number of caches
and processors) Almost all of the errors found were found with a rather small system con-
sisting of one main memory/directory, two processors/caches, and one memory location with
one possible value. Hundreds of thousands of states were examined.

Murphi was also applied to the problem of verifying a link-level communications protocol.
Verification caught several fundamental errors in the initial design. Redesigning the protocol
to be correct and also meet given performance goals was quite difficult. This effort required
larger state spaces than the cache coherence protocol above.

As a result of this experience, Dill and his colleagues conclude that automatic formal protocol
verification can be a valuable design aid. However, the group can only ensure its effective-
ness if the method is used early in the design process, is regarded as a debugging tool, is ap-
plied to a high-level abstraction of the system, and the system description is downscaled.
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4.2.3 Chip Set Design Checking

AT&T Design Automation decided to commercialize some formal verification technology
[De Palma 96]. One part of this technology is FormalCheck, a model checker that was re-
leased in 1996. Alpha versions of FormalCheck were used on both internal and external proj-
ects. The design of a multimedia chip set was one of these projects. When FormalCheck was
ready for testing, the chip design was already believed to be correct and ready for silicon.
There was some worry that the results of the evaluation of the effectiveness of FormalCheck
would be inconclusive because of this.

To allay these concerns and provide a real test, a version of the design with a single known
bug was provided. As expected, most of the checks passed with no errors but several failed.
One of the errors found was a potential loss of data due to a write to a full buffer by the con-
troller. This was the known bug. However, FormalCheck identified two other errors, previ-
ously unknown to the designers. One could cause the memory access controller to totally ig-
nore a request. The other was a bus arbitration problem, which made it possible for low-
priority requests to be blocked indefinitely. These previously known and unknown design
flaws were found with only 20 queries to the FormalCheck model checker.

4.2.4 PowerPC 620 Microprocessor

Model checking was employed to diagnose the cause of a design error found during hardware
testing of the PowerPC 620 microprocessor [Raimi 97]. The model-checking software used in
the model-checking process (Verdict) was developed within Motorola.

During the testing, the error was first detected as a livelock condition while booting an oper-
ating system. Subsequent analysis using model checking revealed that the error was the result
of a complicated interplay among requests for services, bus snooping, and associated bus ac-
cess and control actions in the store buffer controller. The model created to analyze this error
was relatively small compared to the capability of the tool. The resulting model involved
more than two million states. But this level of complexity is beyond that which can be under-
stood in detail and analyzed by an individual engineer without automated support tools.

The design team identified and corrected the error with information provided by the model
checker output. In addition, this work demonstrated the advantage of model checking over
simulation in that simulators require the creation of “test input vectors.” This is similar to the
drawback associated with testing. In both testing and simulation, it is necessary to guess at
where errors might occur since it is impractical to test all cases.

What is also significant in this work is the demonstration that the error could have been de-
tected earlier in the design cycle—before the design was implemented in silicon, by applying
model checking on a simplified specification. In this simplified specification and checking
effort, the failure and associated causal information were provided by checking against ex-

18 CMU/SEI-98-TR-009




pected “good” behavior and using counter example output information to understand the de-
tails of the failure.

4.2.5 Fujitsu Communications Chip

During field tests of a complex high speed communications IC chip, errors in the form of du-
plicated and lost data were observed shortly after powering on [Fujita 96]. The chip was de-
signed for high speed switching operations at 156 MHz and involved over 110,000 gates.
During the development effort, extensive simulation was used to validate the circuit. But
since these errors occurred only after several seconds of operation hundreds of millions of
simulation cycles would be required to fully simulate the error situation. Using simulation to
investigate these errors was impractical.

To evaluate the problem the Symbolic Model Verifier (SMV) model checker was used. In
creating the model the complex system was substantially abstracted and data path widths
were reduced to lower the number of possible states of the model. Using this model in SMV
running on a workstation, it required less than a half-hour to determine the errors arose from
a condition where the same address appeared twice in a FIFO.

In this case, model checking was able to identify an error that eluded detection throughout the
design and conventional verification processes. The complexity of the model used was sub-
stantially less than the chip itself, providing evidence that a simplified model of a complex
system can be effective in identifying errors that have significant impact and are difficult to
detect using conventional review and simulation techniques.

4.2.6 Software Model Checking

Wing and Vaziri-Farahani applied model-checking techniques to software [Wing 96]. Their
approach abstracted the software into finite state models that are specific both to the system
and the particular property or set of properties to be verified.

Two real-world cache coherence protocols were verified using their methods, for versions of
the Andrew File System [Howard 88], and for a modified version of the Coda Distributed File
System [Mummert 94]. The SMV model checker was used for the analysis. For the most com-
plex protocol model, SMV took less than 1 second to check over 43,600 reachable states.

What is significant about this investigation is that it applied a hardware model-checking tool
to a software system and highlighted the importance of engineering judgment in choosing the
right abstractions. Their abstraction choices were based upon their intuition. But while also
noting that there is a need to research more formal techniques to make the reasoning about
abstraction choices more precise, the *“‘approximate’ reasoning by the use of model checking
is a low-cost, yet highly effective” approach to finding errors in software system designs.
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4.3 Advantages of Model-Checking and MBV
Techniques

There is substantial evidence within the successes of the use of model checking that errors
can be detected early and that these errors can be identified using relatively simple models of
highly complex systems [Clarke 95, Dill 92, Raimi 97]. In addition, it has been shown that
many of the errors uncovered by modeling checking techniques are subtle and often highly
problematic errors. These subtle errors eluded detection through conventional reviews,
simulation, and testing.

Collectively, these results suggest a potential for the successful application of model-based
verification to software intensive systems. Specifically, by using simplified and focused mod-
els of complex software systems, model checking offers the potential to augment existing
software defect identification practices (e.g., inspections, simulation, testing) and aid in iden-
tifying problematic errors that elude detection with these practices.

4.4 Model-Checking Tools

Commercial model-checking tools for digital hardware system design are now available.
They are generally packaged as part of a more comprehensive development environment for
MicCroprocessor or custom integrated chip design and verification (FormalCheck, Insight).
Other model-checking tools have been used within commercial organizations for both hard-
ware and communications protocols (SPIN). Many more model-checking tools are available
at academic and research institutions (e.g., SMV, Murphi, Verdict). A representative set of
these tools is presented in Appendix A.
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5 Summary

Model-based verification is an amalgamation of a variety of modeling and formal analysis
techniques that are either already established software engineering practices, being used in
other engineering domains (e.g., commercial microprocessor design), or emerging in aca-

- demic and corporate research communities. The technical foundations of model-based verifi-
cation establish a basis for improving the dependability of software upgrades by addressing
upgrades at higher design levels.

Through their focus on abstract essential models of software systems, model-based verifica-
tion technologies offer the potential to detect errors early in the life cycle. Other benefits of
these technologies include:

* provision of an infrastructure for design and upgrade rationale
e establishment of a systematic basis for integrated verification and testing practices

e facilitation of an evolutionary upgrade paradigm based upon pragmatic formal modeling
methodologies

The objectives of the Verification and Test efforts within the SEI are to investigate and
codify technologies for improving the engineering practices and dependability of software
system upgrades. While there are pragmatic issues that must be addressed, model-based
verification technologies (e.g., model checking) are sufficiently matured that they can be
documented, structured into a defined practice, and applied to real world problems in the
form of pilot software engineering studies. By focusing on the most mature and promising
technical approaches and applying those techniques to real world problems, these studies
will help to determine the cost and technical effectiveness of model-based verification
practices, and establish a foundation for broader implementation in DoD programs. Most of
these studies will be collaborations with organizations interested in adopting the practices.
Continuing cooperative investigations with research and educational institutions are being
conducted to ensure mathematical soundness, clarify related technical issues, and under-
stand implementation constraints.

The results to date of the work in model-based verification suggest that model-based verifi-
cation approaches can become complementary components of a comprehensive verification
practice for software upgrades. As such, they can be integrated into and augment current
software upgrade practices by providing additional techniques for error detection and correc-
tion. Future SEI technical reports and publications will present the results of the ongoing
work and describe model-based verification practices in greater detail.
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Appendix A: Model Checking and Related
Verification Tools and Techniques

There are a number of model-checking tools that have been developed and successfully
employed to analyze systems. This section presents a summary of a representative set of
those tools.

Generally, a tool reflects a particular theoretical approach. Individual tools are often distin-
guished from others that use a similar theoretical approach by the specific search or analysis
algorithms implemented in the tool or a unique implementation of the approach.

A.1 Nitpick

Nitpick is a tool for checking software requirements and design specifications [Jackson 96c,
Jackson 96d, Nitpick 98]. A state machine model of the system is created using a Z-like lan-
guage (NP). Within the Nitpick tool the NP model is checked against expected properties
(claims) of the system. These properties of the system as well as the model are expressed in
the NP language.

The Nitpick tool compares the expected properties of the system (claims) with the model and
confirms that the claim is true or, if it not true, provides a counter example that demonstrates
the violation of the expected property. This is shown in Figure A1. The input file (specifica-
tion) is a text file that consists of both the model and claims expressed in the NP language.
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Figure A1: The Nitpick Tool

More information on Nitpick can be found at the Web site: http://www.cs.cmu.edu/~nitpick/.

A.2 Symbolic Model Verifier (SMV)

The Symbolic Model Verifier (SMV) model checker is a tool for checking a finite state model
of a system against properties, assertions or claims (a specification) of that system. Models of
the system are expressed in the SMV input language [McMillan 92a, McMillan 92b, McMil-
lan 93, SMV 98]. The desired properties (specifications) of the system are expressed in com-
putational tree logic (CTL).

A system model may include multiple state machine models and associated properties or
claims about the system. The models and associated properties are grouped into modules. The
sets of modules for a system are input into the SMV model checker system as shown in Fig-
ure A2.
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Figure A2: SMV Model Checker

More information on SMV and model checking can be found at the Web site:
http://www.cs.cmu.edu/~modelcheck/

A.3 Software Cost Reduction (SCR)

The Software Cost Reduction (SCR) requirements method is a system and software require-
ments specification approach for real-time embedded systems. The SCR approach is based on
formal methodologies and is capable of specifying both functional and non-functional (e.g.,
timing and accuracy) requirements.

This is not strictly a model-checking tool but is a tabular specification technique that incorpo-
rates formal methodologies for describing state machines. As such it can be employed as a
modeling approach for abstract representations of a system. In addition, the tool interfaces to
other model-checking tools (e.g., SPIN, SMV) to enable more extensive model checking.

The SCRtool can relieve a reviewer of mundane, application-independent activities. For exam-
ple, checks like ensuring that all variables are initialized, all variables are defined, etc., i.e. that
the specification has all the “right” qualities required of any specification can be automated.

More information on the SCR tool can be found at the Web site:
http://www.itd.nrl.navy.mil/TTD/5540/personnel/heitmeyer.html
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A.4 SPIN

SPIN is a model checker developed at Bell Labs for the analysis of synchronous concurrent
systems (e.g., data communication protocols, distributed operating systems, database sys-
tems). Using a model specified in its custom language, Promela, SPIN can perform random
simulations of a system’s execution and/or generate a C program that, when compiled and
executed, can be used to check a system’s state space against expected properties.

For smaller problems, SPIN’s model checking exhaustively explores every possible state of
the system model. For larger problems, SPIN uses a hashing function to get best coverage of
the state space, given the physical limitation of the computing environment. Specifically,
SPIN uses partial order reduction to reduce the number of states that must be explored in or-
der to verify a system and in the cases that the state space exceeds the computer’s resources,
SPIN employs bit-state hashing to selectively explore the state space.

Correctness properties are expressed in terms of Linear Temporal Logic, but these must first
be translated into the Promela language for input into the tool. These can be translated manu-
ally or translated using the automated translator.

Additional information on SPIN can be found on the Web site:
http://netlib.bell-labs.com/netlib/spin/whatispin.html

A.5 Murphi

Murphi (actually Mur) is a high-level description language and associated tool set that en-
ables automatic formal verification of protocols and other distributed finite-state systems
[Dill 92]. The Murphi approach to verifying large systems is to downscale them. Instead of
testing a small fraction of the possibilities for a large model of the system, Murphi assesses
all of the possibilities for a small instance of the system.

The Murphi description language supports nondeterministic, scalable descriptions and employs
a set of iterated guarded commands. Murphi can detect deadlocks (states with no successors
other than themselves). Also, rules can give error conditionals and/or assertions. Finally, if any
of the invariants are violated, an error is reported. The system cannot detect livelocks.

Additional information on Murphi can be found at the Web site:
http://sprout.stanford.edu/dill/murphi.html

A.6 Commercial Model-Checking and Related
Products

A number of commercial model-checking tools, primarily for digital hardware systems, are
available. They are generally packaged as part of a more comprehensive development envi-
ronment for microprocessor or custom integrated chip design and verification. Other tools
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have been used within commercial organizations for both hardware and communications
protocols. Example products that are commercially available or are in house development
tools include:

e FormalCheck. FormalCheck is a model checker developed by Lucent Technologies that
is used in the design and verification of digital hardware systems. In applying
FormalCheck a user inputs the design model in VHDL or Verilog RTL code and provides
a query that describes a desired property of the design or a set of constraints on primary
inputs of the design. The constraints limit the set (or sequence) of possible values on
those inputs consistent with the legal operation of the design. As with other model
checkers, FormalCheck either verifies that the property is true under all possible,
allowable conditions, or provides an error trace showing a case where the property fails.
FormalCheck can be used for communication protocols, bus controllers, video
applications, control portions of processors and cache protocols. A Web site for more
information is http://www.bell-labs.com/org/blda/product_formal.html.

e Insight. Chrysalis Symbolic Design, Inc. offers software tools that use formal methods to
automate the design of digital integrated circuits. These verification tools include the
Design INSIGHT® Assertions™ formal model-checking tool which provides a
generalized set of programmable formal checks that engineers can use to eliminate
typical problems, such as drive fights and one-hot controller protocols as they design and
debug intra-chip interfaces and protocol logic.” A Web site for more information is
http://www.chrysalis.com.

e SpecTRM (RSML). The tool set, Specification Tools and Requirements Methodology
(SpecTRM) is used for system requirements specification. Its formal requirements
specification language is SpecTRM-RL, the successor language to Requirements State
Machine Language (RSML) [Leveson 94, Heimdahl 96]). While the language is readable
by engineers not expert in formal methods, it is amenable to automated analysis. The
automated analysis enables early hazard and error identification and is especially useful
for high assurance and safety systems. This tool set is representative of the approach of
bring formal methods into software engineering practice by making the rather esoteric
formal methodologies easier to use. Additional information on SpecTRM can be found at
the Web site: http://www.safeware-eng.com/.

e  Verdict. Verdict is a model checker that was developed within Motorola. It is a
computational tree logic-based model checker that includes facilities for parsing the IBM
hardware description language DSL™. It has been used for digital hardware analysis at
the joint IBM-Motorola Somerset design center [Raimi 97].
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